Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Arvid Mostad

Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway

Correspondence e-mail: arvidm@kjemi.uio.no

Key indicators

Single-crystal X-ray study
$T=105 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
$w R$ factor $=0.102$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

A second polymorphic form of pentazocine hydrochloride at 105 K

The crystal structure of pentazocine hydrochloride [systematic name: 2-hydroxy-5,9-dimethyl-2-(3-methylbuten-2-yl)-6,7benzomorphanium chloride], $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$, has been determined at 105 K and found to be a second polymorphic form with space group $C 2 / c$. The space group and the unit-cell parameters are different from a reported crystal structure at 293 K [Majeste, Poindexter, Jones \& Klein (1994). Acta Cryst. C50, 1633-1636]. There are only small differences in the molecular conformation, but the association between the protonated pentazocine molecules and the chloride ion is different.

Comment

The crystal structure of pentazocine hydrochloride, (I), has been reported to exist at room temperature in space group $P 2{ }_{1} / c$ with two independent molecules in the asymmetric unit (Majeste et al., 1994). However, an examination of crystals of pentazocine hydrochloride at 105 K has shown that the compound also exists in space group $C 2 / c$ with a different mode of packing around the chloride ions. The molecular structure and atom numbering are given in Fig. 1.

(I)

Each chloride ion is hydrogen bonded to atoms N 1 and O 1 of two different cations, as shown in Fig. 2 and described in Table 2. The angle $\mathrm{N} 1 \cdots \mathrm{Cl} 1 \cdots \mathrm{O} 1\left(\frac{1}{2}-x,-\frac{1}{2}+y, \frac{3}{2}-z\right)$ is 107.60° in the present study, in contrast to $168.80(8)^{\circ}$ reported for a similar linkage in the room-temperature structure. In addition to the hydrogen bonding to N 1 and O 1 , the distance $\mathrm{Cl} 1 \cdots \mathrm{H} 15 B(-x, 1-y, 1-z)$ is very short, only $2.69(2) \AA$. The geometry of this contact, as well that of another close contact, between $\mathrm{C} 14-\mathrm{H} 14$ and O1, are given in Table 2.

The packing is depicted in Fig. 3, where the shortest contacts are also indicated. In spite of the difference in the space group and packing, there are only minor, though significant, differences in the molecular structure and conformation. Even the rather large displacement parameters seen for atom C16 in the high-temperature structure are also seen for the equivalent atom (C 18) in the present structure.

Received 21 December 2004
Accepted 14 February 2005
Online 19 February 2005

Figure 1
A view of the asymmetric unit of (I), showing the atom numbering and displacement ellipsoids at the 50% probability level. The dashed line indicates a hydrogen bond.

The torsion angle $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$ is $-2.2(3)^{\circ}$, bringing C 18 and C 15 into close contact; internal strain is also indicated by the angles $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$ of 127.2 (1) ${ }^{\circ}$ and $\mathrm{C} 16-\mathrm{C} 17-$ C 18 of $125.0(1)^{\circ}$. This planar configuration, a consequence of the double bond between atoms C16 and C17, is also influenced by rather short contacts between neighboring chloride ions and atoms H16, H18A and H15 A, the distances being 2.91 (2), 3.03 (2) and 3.03 (2) Å, respectively.

Experimental

The title compound was recrystallized from ethanol. The compound was purchased from Winthrop Laboratories, Newcastle, in 1978 in connection with our work on some similar compounds. In 2004, prismatic needle crystals were found in a test tube that originally contained the compound in an ethanol solution.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=321.87$
Monoclinic, $C 2 / c$
$a=24.541(5) \AA$
$b=11.537(2) \AA$
$c=14.897(3) \AA$
$\beta=119.05(3))^{\circ}$
$V=3687(1) \AA^{3}$
$Z=8$

Data collection

Bruker SMART diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.896, T_{\text {max }}=0.957$
28837 measured reflections
4582 independent reflections

Refinement

[^1]$D_{x}=1.160 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 23580 reflections
$\theta=2.3-28.4^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=105$ (2) K
Needle, colorless
$0.5 \times 0.2 \times 0.2 \mathrm{~mm}$

4113 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-32 \rightarrow 32$
$k=-15 \rightarrow 15$
$l=-19 \rightarrow 19$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0594 P)^{2}\right. \\
\quad+2.1933 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.38 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

O1-C2	1.369 (1)	C8-C9	1.530 (2)
N1-C14	1.497 (2)	C9-C10	1.532 (1)
N1-C9	1.515 (1)	C10-C11	1.532 (2)
N1-C15	1.518 (1)	C13-C14	1.516 (2)
C5-C6	1.528 (1)	C15-C16	1.502 (2)
C5-C12	1.536 (2)	C16-C17	1.326 (2)
C5-C13	1.549 (2)	C17-C18	1.498 (2)
C5-C10	1.552 (2)	C17-C19	1.509 (2)
C7-C8	1.519 (2)		
C14-N1-C9	111.4 (1)	C7-C8-C9	115.3 (1)
C14-N1-C15	111.0 (1)	N1-C9-C8	112.7 (1)
C9-N1-C15	114.1 (1)	N1-C9-C10	108.0 (1)
O1-C2-C3	117.7 (1)	C8-C9-C10	111.6 (1)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	122.5 (1)	C10-C9-H9	110 (1)
C6-C5-C12	112.8 (1)	C11-C10-C9	109.9 (1)
C6-C5-C13	109.0 (1)	C11-C10-C5	114.2 (1)
C12-C5-C13	107.3 (1)	C9-C10-C5	109.0 (1)
C6-C5-C10	109.8 (1)	C14-C13-C5	112.9 (1)
C12-C5-C10	110.0 (1)	N1-C14-C13	110.1 (1)
C13-C5-C10	107.7 (1)	C16-C15-N1	109.7 (1)
C7-C6-C5	120.0 (1)	C17-C16-C15	127.2 (1)
C1-C6-C5	120.7 (1)	C16-C17-C18	125.0 (1)
C4-C7-C8	118.4 (1)	C16-C17-C19	120.6 (1)
C6-C7-C8	122.7 (1)	C18-C17-C19	114.4 (1)
C2-C1-C6-C5	179.9 (1)	N1-C9-C10-C5	-63.4 (1)
C12-C5-C6-C7	153.0 (1)	C8-C9-C10-C5	61.0 (1)
C13-C5-C6-C7	-87.9 (10)	C6-C5-C10-C11	64.3 (10)
C10-C5-C6-C7	29.9 (1)	C12-C5-C10-C11	-60.4 (1)
C12-C5-C6-C1	-28.9 (1)	C13-C5-C10-C11	-177.1 (1)
C13-C5-C6-C1	90.2 (1)	C6-C5-C10-C9	-59.1 (1)
C10-C5-C6-C1	-152.0 (1)	C12-C5-C10-C9	176.2 (1)
C3-C4-C7-C8	-179.1 (1)	C13-C5-C10-C9	59.5 (1)
C1-C6-C7-C8	-179.3 (1)	C6-C5-C13-C14	63.6 (1)
C5-C6-C7-C8	-1.2 (2)	C12-C5-C13-C14	-173.9 (1)
C4-C7-C8-C9	-178.7 (1)	C10-C5-C13-C14	-55.6 (1)
C6-C7-C8-C9	1.8 (2)	C9-N1-C14-C13	-57.5 (1)
C14-N1-C9-C8	-61.2 (1)	C15-N1-C14-C13	174.1 (1)
C15-N1-C9-C8	65.5 (1)	C5-C13-C14-N1	54.5 (1)
C14-N1-C9-C10	62.5 (1)	C14-N1-C15-C16	-76.5 (1)
C15-N1-C9-C10	-170.7 (1)	C9-N1-C15-C16	156.5 (1)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	89.8 (1)	N1-C15-C16-C17	122.0 (1)
C7-C8-C9-C10	-31.9 (1)	C15-C16-C17-C18	-2.2 (3)
N1-C9-C10-C11	170.6 (1)	C15-C16-C17-C19	177.8 (10)
C8-C9-C10-C11	-65.0 (1)		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.97(2)$	$2.69(2)$	$3.644(2)$	$171(1)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Cl} 1^{\text {ii }}$	$0.90(2)$	$2.23(2)$	$3.126(1)$	$175(1)$
$\mathrm{O}_{1}-\mathrm{H} 20 \cdots \mathrm{Clii}$	$0.87(2)$	$2.24(2)$	$3.089(1)$	$168(2)$
$\mathrm{C}^{\text {14 }}-\mathrm{H} 14 B \cdots \mathrm{O}^{\text {iv }}$	$0.95(2)$	$2.49(1)$	$3.153(2)$	$127(1)$

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $x, y-1, z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y, 2-z$.

All H atoms were located in difference maps and, except for the H atoms bonded to C 18 , were refined by isotropic approximation. The relatively large displacement of C18 approximately perpendicular to the C15/C16/C17/C18 plane may be induced by the crowded environment of the C18 methyl group. The large anisotropy is believed to indicate large restrictions in vibrational freedom, or possibly a slight disorder in the position of atom C 18 . The values of the displacement parameters for C18 are, however, not considered to be large enough

Figure 2
The bonding between protonated pentazocine molecules and the chloride ions. Ions A are at the symmetry position $\left(\frac{1}{2}-x,-\frac{1}{2}+y, \frac{3}{2}-z\right)$. Dashed lines indicate hydrogen bonds.
to split atom C 18 . For this reason, the H atoms bonded to C 18 were refined with riding constraints. Except for the distances involving H1N and H20, described in Table 2, the $\mathrm{C}-\mathrm{H}$ distances are in the range 0.93 (1)-1.03 (1) \AA.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine

Figure 3
The packing of the ions in space group $C 2 / c$. Dashed lines indicate hydrogen bonds.
structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc, Madison, Wisconsin, USA.
Majeste, R. J., Poindexter, D., Jones, L. \& Klein, C. L. (1994). Acta Cryst. C50, 1633-1636.
Sheldrick, G. M. (1997). SADABS. Version 1.0.2. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
 $w R\left(F^{2}\right)=0.102$
 $S=1.04$
 4582 reflections
 311 parameters
 H atoms treated by a mixture of independent and constrained refinement

